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Abstract The chemical processes developed in the 15N-isotope separation plant are
very complex and many details are not yet known in totality. Accurate models for such
isotope separation plants offer an invaluable insight towards optimizing the production
and establishing an adequate control action. A model of such an isotope plant is
presented in the paper. The results are validated by simulation, based on a lot of
experiments. The model is then used to evaluate and establish the necessary conditions
for a maximum production for an existing pilot plant. For protection purposes, the
experimental data used in this paper have been scaled.

Keywords Isotope separation column ·Mathematical modeling ·
Nitrogen separation

1 Introduction

In scientific research or industrial applications, the stable isotopes O (oxygen), N
(nitrogen), C (carbon), etc are widely used [1–5]. In natural conditions, the ratio of
concentration of the nitrogen 14N/15N is: 99.635/0.365 (%). In specific applications
a greater “abundance” of the isotope (15N) is required, if possible up to 99.9 (%).
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More methods to separate the (15N) isotope are known, both on a laboratory scale
and on large scale production. The present paper studies the method invented by
Spindel and Taylor about 1955 [6–8], which is based on the “chemical exchange” [9]
between liquid phase of nitric acid and gaseous phase of monoxide and dioxide of
nitrogen [10]:

⎧
⎪⎪⎨

⎪⎪⎩

N15O+ HN14O3
−→
←−N14O+ HN15O3

N15O2 + HN14O3
−→
←−N14O+ HN15O3

(1)

The paper presents a Babkov model of the nitrogen separation process based on chem-
ical exchange. The model is validated based on experimental data and further used to
compute the required settings for maximum production for a pilot plant built at the
National Institute for Research and Development of Isotopic and Molecular Technolo-
gies, Cluj-Napoca, Romania (http://www.itim-cj.ro/en/index.php).

The paper is structured as follows. The first section presents the Babkov model of
nitrogen separation columns, with and without extraction. The equations necessary to
evaluate the production potential of such columns are further presented, followed by
some subsections that validate through experimental data the steady state and transient
regime model derived previously. The next section presents the application example:
a pilot plant nitrogen isotope separation column. The model presented in the previous
section is used here to compute the production potential of this pilot plant. The authors
show that under some given conditions a maximum production may be achieved.

2 The Babkov model of the column

A mathematical model for the isotope separation column has been proposed by Babkov
[11], being validated for the separation of (15N) through chemical exchange during
the experiments performed by Monse and Spindel [12] or by Pompidor [13,14]. The
model presented in this paper is derived based on Babkov approach and validated
using experimental data.

The isotope separation coefficient ∝ in steady state conditions for the kth plate:

α =
xk

1−xk

(N15)Gk
1−(N15)Gk

, (2)

with
(

15N
)

Gk = xk
α−xk(α−1)

, where xk is the 15N isotope concentration in the liquid

phase on column plate k, xk is the maximum 15N isotope concentration in the liquid
phase on column plate k obtained at steady state and total reflux,

(
15N

)
Gk is the 15N

isotope concentration in the gaseous phase coming out of plate k.
Throughout the paper the following notations will be used: Sp—the isotope enrich-

ing defined by Sp = xp
x0

, Sp—the isotope enriching defined by Sp = xp
x0

, SE—the
enriching corresponding to an extraction E, p—the number of theoretical plates in the

123

http://www.itim-cj.ro/en/index.php


J Math Chem (2014) 52:115–131 117

Table 1 Validation of Eq. (5)
P (atom/h) Sp = αp Sp = xp

x0
xp = αp x0 xp

Eq. (5) Eq. (4) Eq. (5) Eq. (4)

10 1.63 1.63 0.0060 0.0060

20 2.65 2.64 0.0098 0.0098

30 4.32 4.27 0.0160 0.0158

40 7.04 6.89 0.0260 0.0255

50 11.5 11.0 0.0424 0.0408

60 18.7 17.5 0.0691 0.0649

70 30.4 27.4 0.1126 0.1015

80 49.6 42.0 0.1834 0.1554

90 80.7 62.3 0.2987 0.2307

100 131.5 88.7 0.4866 0.3281

column, L—the feed flow into the column, X—volumetric feed flow into the column,
V0—the number of isotope atoms in the liquid phase of concentration xp hold up in
the plant outside the separation column.

The equilibrium condition in steady state on the kth plate is given by:

L · xk−1 = L ·
(

15N
)

Gk = L · xk

α−xk(α−1)
. (3)

Considering that
(

15N
)

Gk = xk−1 [11], the following relation is obtained:

xk = α xk−1

1+ (α−1) xk−1
. (4)

For a reduced 15N concentration, the denominator of (4) may be approximated as
1+ (α−1)xk−1 ∼= 1, and (4) is reduced to xk = α xk−1, leading:

x1 = α x0 and xk = αkx0. (5)

The concentration xp is thus computed using Eqs. (4) and (5). To validate this
first mathematical modeling step, the values obtained for xp are compared with the
experimental data [11] given in Table 1.

The comparative results in Table 1 show that the valid region for Eq. (5) is limited
to 15N concentrations below 6 %.

Further assumptions are considered in the modeling phase, such as [11]: the isotope
separation coefficient is α = 1.055, throughout the entire column length, the gaseous
nitrogen hold-up is negligible compared to the liquid hold-up, the nitrogen atoms
hold-up on plate H0 is the same on all plates of the column, the relative concentration
Rk = xk

1−xk
remains the same on all plates.
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For concentrations xk � 1 and Rk ≈ xk, the following relation holds:

x1 − x0

x1 − x0
= xk − x0

xk − x0
= xp − x0

xp − x0
. (6)

Equation (2) holds also during transient regime:

(
15N

)
Gk = xk

α−xk(α−1)
. (7)

In what follows the assumption that the relative concentration remains the same on
all plates is modified, considering that Eq. (6) holds for all values of x0.

The equilibrium relation for 15N as shown in Fig. 1 is written as:

L · dt · x0 − L · dt · x1

α−x1(α−1)
= H0dx1+· · ·+H0dxk+· · · + H0dxp+V0dxp.

(8)

For a column with total reflux the term:

P0 = L · x0 − L
x1

α−x1(α−1)
, (9)

represents the 15N quantity retained in the column on a time unit, namely the total
reflux “production”. The 15N accumulated in a time unit dt is given by:

dM = H0dx1 + · · · + H0dxk + · · · + H0dxp + V0dxp. (10)

Considering also that the relative concentration remains the same on all plates, the
15N quantity may be expressed as a function of a sole parameter. Using:

xk − x0

xk − x0
= x1 − x0

x1 − x0
, (11)

the following relation is obtained:

dxi = xk − x0

xk − x0
dx1 = K1dx1, (12)

and the sum dM in (10) may be written as:

dM =
p∑

i=1

(
H0Ki + V0Kp

)
dxi = U1dx1. (13)

The term U1 may be explicitly computed only for small concentrations of 15N, other-
wise only a numeric approach may be performed.
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Fig. 1 Flows and concentration on the 15N column, without extraction

Since the column is fed with nitric acid of a natural concentration of 15x0 =
0, 365 %, then we have the following α−x1(α−1) ≈ α and x1 = α x0.x1. Thus,
Eq. (8) may be rewritten as:

(

Lx0 − x1L
α

)

dt =
(

H0

p∑

i=1

Ki + V0Kp

)

dx1 = U1dx1 or
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d

[

log

(

Lx0 − x1L
α

)]

= − L

U1 α
dt. (14)

The initial conditions xi = x0 at t = 0 lead to the following equation:

x1 = x0

[

α−(α−1)exp

(

− L

U1 α
t

)]

. (15)

Relation (6) leads to:

x1

x0
= 1+

(
xp

x0
− 1

)

· x1 − x0

xp − x0
.

Taking into account that x1 = α and Sp = xp
x0

, the following relation is obtained:

Sp − 1 = (Sp − 1)

[

1− exp

(

− t

T

)]

, (16)

where T = U1 α
L is the time constant for column start-up at total reflux. Using the

approximation for small 15N concentrations, leads to:

xi = αi · x0

Ki = αi − 1
α−1

U1 = H0

p∑

i=1

(
Ki + V0Kp

) = H0

(
α−1
α−1

+ α2 − 1
α−1

+ . . .+ αi − 1
α−1

+ . . .+ αp − 1
α−1

+V0
αp − 1
α−1

)

= 1
α−1

· H0(α+α2 + · · · + αi + · · · + αp − p)+ V0
αp − 1
α−1

.

Considering also that:

(1+ α+ α2 + . . .+ αi + · · · + αp) = 1− αp+1

1− α
,

the relations for U1 and T may be written as:

U1 = 1
α−1

·
[

(αp − 1)

(

H0
α

α−1
+ V0

)

− p · H0

]

(17)

T = α

(α−1) L
·
[

(αp − 1)

(

H0
α

α−1
+ V0

)

− p · H0

]

. (18)

with T being equal to K(α) established by Pompidor [13].
From a control engineering point of view, the isotope separation column behaves

as a first order system having the initial values Sp = 1 at t = 0 and asymptote Sp =
Sp for t = ∞, with the time constant T = U1 α

L .
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Fig. 2 Flows and concentration on the 15N column, with constant extraction

2.1 Mathematical model for column start-up with extraction

In what follows, the assumption of Babkov for steady state relations is considered to
hold for a column operating under constant extraction E (15N atom/h).

The equilibrium relation for 15N, based on Fig. 2, is given by:

[

Lx0 − (L − E)
x1

α−x1 (α−1)
− E xp

]

dt = U1dx1. (19)

Using the following equations:

α−x1(α−1) ≈ α

xp = x0 + (x1 − x0)
xp − x0

x1 − x0
= x0 + (x1 − x0)

Sp − 1

α−1
,

leads to:

(B′ − Ax1)dt = T dx1, (20)
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in which A = 1+ E
L [ α

α−1 (Sp−1)−1], B′ = {α+ E
L [ α

α−1 (Sp−1)−α]}x0,T = U1 α
L and

dt = −T

A
d log

(
B′ − Ax1

)
. (21)

Initial conditions refer to: the enrichment Sp at the bottom of the column is attained
at t = 0, corresponding to x = x1,while the extraction E is constant starting at t = 0+.

Integrating Eq. (21) leads to:

T = −T

A
log

B′ − Ax1

B′ − Ax1
, (22)

or exp (− t
T A) =

B′
Ax0
− x1

x0
B′

Ax0
− x1

x0

.

From (6) the following set of relations is obtained:

x1 = x0 +
(
xp − x0

) x1 − x0

xp − x0

x1

x0
= S1 = 1+ (

Sp − 1
) α−1

Sp − 1
x1

x0
= S1 = 1+ (Sp − 1)

α−1

Sp − 1
.

Replacing x1
x0

and x1
x0

in the exponential equation given above leads to:

exp

(

− t

T
A

)

=
B′

Ax0
− 1− (

Sp − 1
)

α−1
Sp−1

B′
Ax0
− 1− (

Sp − 1
)

α−1
Sp−1

= F
(
Sp − 1

)− (
Sp − 1

)

F
(
Sp − 1

)− (
Sp − 1

) , (23)

with

F =
(

B′

Ax0
− 1

)
1

α−1
= 1− E

L

1+ E
L

[
α

α−1

(
Sp − 1

)− 1
] . (24)

Rearranging (23) yields:

(
Sp − 1

) = (Sp − 1)+ [
F(Sp − 1)− (Sp − 1)

]
[

1− exp

(

− t

T
A

)]

= (Sp − 1)+ [
(SE − 1)− (Sp − 1)

]
[

1− exp

(

− t

T
A

)]

. (25)

For t = 0, Sp = Sp, while for t = ∞, Sp → 1+ F(Sp − 1) = SE. Therefore, SE is
the value obtained under constant extraction E.
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From a control engineering perspective, the enrichment has a first order system
dynamics with an initial value of Sp, asymptote SE, and a time constant TS = T

A , with
(TS) less than (T) since (A) is greater than unity.

The relation:

SE = 1+ F(Sp − 1) = 1+ 1− E
L

1+ E
L

[
α

α−1

(
Sp − 1

)− 1
] · (Sp − 1), (26)

allows for computation of the steady state enrichment with an extraction E, knowing
only the value Sp at total reflux.

From (26), we have that:

E = L · Sp − SE
α

α−1

(
Sp − 1

) (
SE − 1

)+ (
Sp − SE

) , (27)

or:

α

α−1
=

(
1+ E

L

) (
Sp − SE

)

E
L

(
Sp − 1

) (
SE − 1

) = C

α = C

C− 1
. (28)

Relation (27) allows for the computation of E knowing only the values of Sp and
SE. Relation (28) allows for the computation of α, especially in experiments where
the values E, L, Sp and SE have already been measured.

2.2 Productive potential of separation columns: with and without extraction

Using Eq. (9), for E = 0, the total reflux production may be computed as:

P0 = L · x0 − L
x1

α
,

and further, using (3), we obtain:

x1 = α−1

Sp − 1

(
xp − x0

)+ x0,

yelding:

P0 = L x0 − L
α

α−1

Sp − 1
xp + L

α

α−1

Sp − 1
x0 − L

α
x0

P0 = L x0
α−1

α
· Sp − Sp

Sp − 1
. (29)
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P0 is a liniar function of Sp, passing through the points P0 = 0, Sp = Sp (plate value)
and P0 = L x0

α−1
α , Sp = 1 (maximum P0 value, obtained at the begining of the

experiment).
The column production in steady state (E 
= 0) has the expression:

PS = E · xE = E · SE · x0.

While P0 represents the (15N) quantity retained during a time slot on a total reflux
column during its start-up, PS represents the (15N) quanitity extracted during a time
slot from a column operating at steady state conditions. PS may be directly computed
using Eq. (26):

PS = SE · E · x0 =
⎡

⎣1+ 1− E
L

1+ E
L

[
α

α−1

(
Sp − 1

)− 1
] · (Sp − 1)

⎤

⎦ · E · x0 (30)

or using Eq. (27):

PS = SE · x0 · L · Sp − SE
α

α−1

(
Sp − 1

) (
SE − 1

)+ (
Sp − SE

) . (31)

The representative curve of PS as a function of SE is a hiperbola branch with the
limits in the points: PS → 0 for SE → Sp, PS → Lx0 for SE → 1.

2.3 Validation of the SE and PS equations for a column operating in steady state
conditions and continuous extraction

Equations (26), (27) and (30) have been verified using the experimental data provided
by [15]. The columns have a height of 3 and 4 meters respectively, with 57 % nitric acid
feed flows in the range of 3–4 l/h. The nitrogen “quantity” extracted, E, is expressed
as: E = V · a, where V is the volumetric flow and a is the 15N concentration in the
extracted product. The main results obtained for SE, E

L and PS are presented in Figs. 3
and 4.

Experimental relations (26), (27) and (30) are verified with a maximum error of
3–5 %. The figures above—Figs. 3 and 4 show that the experimental data is closely
approximated by the mathematical model derived.

2.4 Validation of the mathematical model in transient regime

The transient regime equation corresponds to a first order system, with the most impor-
tant parameter of the dynamic model represented by the time constant T = U1 α

L and the
time constant associated with the column operating under extraction TS = T

A = U1 α
LA .

The validation of the time constants are done using the same experiments of [14].
The initial experimental data are given in Table 2 [14].
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Fig. 3 Results for SE and E/L in steady state with withdraw
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Fig. 4 Results for SE and PS in steady state with withdraw

The points on the curve SP = f(t) are computed based on the following data: t1—the
abundancy of the starting plate, t2—the abundancy of the final plate, T or TS—the
time constants (hours), G—the final response fraction and h0—the start hour of the
experiment. Next, the authors compute:

G =
(

1− e−Z
)

Z = t

T
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Table 2 Initial experimental data

Experiment H1 H3

Plate concentration:
t · 104

428 228

Time constant:
T = U1·α

L

14.9 5.3

E
L 0.00478 0.00989 0.022 0.00236 0.00542 0.0133 0.04 0.1024

A 2.01 3.12 5.70 1.24 1.55 2.40 5.10 11.4

TS = T
A 7.41 4.76 2.61 4.24 3.42 2.21 1.04 0.46

Extraction plate:
tE · 104

220 160 107 193 156 118 74 50

Start hour of the
extraction h0

0–23 52–58 81 43.3 60 76 93.3 105

Fig. 5 Model validation in transient regime using experiment H1

h = Z · T
h = h0 +�h

�t = G (t1 − t2)

t = t1 −�t.

The calculated curves are presented in Figs. 5 and 6, containing also the corre-
sponding experimental data. The mathematical model described does not take into
account the effect of the chemical reaction on the chemical exchange. Due to this, the
greatest accuracy of the model was obtained for a reflux gas in equillibrium with the
nitric acid in the feed flow. The time constant may serve to predict the column start
up with a sufficient accuracy. The required time to reach 98 % enrichment in the final
value will be approximately 4TS.
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Fig. 6 Model validation in transient regime using experiment H3

3 Results and discussions: model application to a pilot plant (15N) isotope
separation column

The mathematical model derived was further applied to a nitrogen isotope separation
process based on NO–HNO3 exchange, fed with nitirc acid 57 % at 20 ◦C and a total
reduction of the reflux gas.

The simplified scheme of (15N) isotope separation column [1,16,17], of 5 m length
and 4 cm diamater, is depicted in Fig. 7 with: N, n—the mole fraction of 15N in
liquid and gaseous phase [ − ]; L, G—specific flow of 15N in the recycled streams in
[moles · s−1 ·m−2]; Hl, Hg—the holdup in [moles ·m−3]; T—rate of transfer of 15N-
isotope in [moles·s−1·m−3]; K—the transfer rate coefficient [moles·s−1·m−3]; α—the
separation factor [ − ], with T = −k [N (1− n)− α n (1− N)] [moles · s−1 ·m−3].

The enrichment process is governed by the equations [18]:

Hl
∂N

∂t
+ L

∂N

∂z
= +T

Hg
∂n

∂t
+ G

∂n

∂z
= −T. (32)

The isotope exchange is achieved in column, endowed with a special packing [1].
The withdrawal (P) enriched in (15N) isotope is possible at the bottom side of the col-
umn. The column is fed with constant nitric acid flow (F), with a natural concentration
(0.3654 %) of (15N). In the bottom refluxer (R1) [19], using sulphur dioxide, the (NO)
and (NO2) are “generated” according to the chemical reaction:

{
2HNO3 + 3SO2 + 2H2O = 3H2SO4 + 2NO
2HNO3 + SO2 = H2SO4 + 2NO2

(33)
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Fig. 7 Simplified arrangement
of the 15N-isotope separation
plant
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refluxer

R2

Bottom 
refluxer

R1

L2

H2O
G2

Air
Lc1

HNO3-feed
(cM)

Gc1

Cooling
water

θc

N(z,t) n(z,t)

Cooling
water

θi

LP=
3

15NOHP

(cP) Product

G1

SO2

Refluxer cooling
water

Secondary product
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isotopic 
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The top refluxer (R2), Fig. 7, provides the reverse phase transformation:

{
3NO2 + H2O = 2HNO3 + NO
NO+ 1/2O2 = NO2

(34)

while the nitric acid flow is enriched in (15N) isotope.
Based on Eq. (29), different productions according to different feeding streams

have been computed. The results, given in Table 3, show that there is a feeding stream
that leads to a maximum production for a given enriching. This is due to the fact that
a diminishing in the feed flow L causes an increment in the enrichment Sp.

At column start up, by modifying the feed flow the production can be made max-
imum and therefore the column start up is in an accelerated fashion. To compute the
feed flow variations required for such a start up, a relation between Sp and L has to be
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Table 3 Total reflux production
Experiment Feed flow

× (l/h)
Molar
feed
flow L
(mol/h)

Sp = αp P0 = L α−1
α ·

x0

[
atom15N/h

]
·

103

H1 3.0 24.8 11.35 6.54

H3 3.0 44.5 5.98 6.54

B3 2.0 37.1 17.30 4.36

B2 2.9 51.9 12.20 6.32

B5 3.6 37.1 6.97 7.84

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
10

11

12

13

14

15

16

17

Flow [l/h]

S
p

Fig. 8 Sp values

derived. Such relation may be given in a logarithmic form:

Sp = A + B log
C

x
,

with A = 1.3, C = 6 and B varies as a function of the column height.
The following relation holds:

Sp = 1, 3+ R K log
6

X
, (35)

with X the nitric acid flow (l/h), while RK is a function of the column height. The
relation (35) is valid since the Sp = f (X) curve has no discontinuities.

Figure 8 presents the Sp values corresponding to a 5 m column and for different
values of X as given in the B2, B3 and B5 experiments of Koehret [20]. A medium
value for RK was computed.
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Fig. 9 Computed PS values

PS values computed as a function of SE in Eqs. (26) and (30) with E
L as an interme-

diate parameter, for different values of the feed flow, are given in Fig. 9. The results
show that there is a certain feed flow X that ensures a maximum production for a fixed
15N concentration—SE. Therefore, a maximum production may be achieved.

4 Conclusions

Accurate models offer the possibility for studying different phenomena and possibili-
ties for optimization of the processes. The enrichment attained may be evaluated using
the dynamic models, while the steady state offers extremely useful information for
deriving the column operating parameters.

The Babkov model presented in this paper has been firstly validated using various
sets of experimental data collected from different nitrogen separation columns. Then,
the model has been used to determine the optimum feed flow in order to achieve a
maximum production for an existing pilot plant. The results in this paper may be used
to increase the production potential of the pilot plant.
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